
Introductory programming: examining the exams

Simon
University of Newcastle

simon@newcastle.edu.au

Judy Sheard
Monash University

judy.sheard@monash.edu.au

Angela Carbone
Monash University

angela.carbone@monash.edu.au

Donald Chinn
University of Washington, Tacoma
dchinn@u.washington.edu

Mikko-Jussi Laakso
University of Turku
milaak@utu.fi

Tony Clear
Auckland University of Technology

tony.clear@aut.ac.nz

Michael de Raadt
Moodle

michaeld@moodle.com

Daryl D’Souza
RMIT University

daryl.dsouza@rmit.edu.au

Raymond Lister
University of Technology Sydney
raymond.lister@uts.edu.au

Anne Philpott
Auckland University of Technology

aphilpot@aut.ac.nz

James Skene
Auckland University of Technology

james.skene@aut.ac.nz

Geoff Warburton
Australia

geoffw173@gmail.com

Abstract
This paper describes a classification scheme that can be
used to investigate the characteristics of introductory
programming examinations. The scheme itself is
described and its categories explained. We describe in
detail the process of determining the level of agreement
among classifiers, that is, the inter-rater reliability of the
scheme, and we report the results of applying the
classification scheme to 20 introductory programming
examinations. We find that introductory programming
examinations vary greatly in the coverage of topics,
question styles, skill required to answer questions and the
level of difficulty of questions. This study is part of a
project that aims to investigate the nature and
composition of formal examination instruments used in
the summative assessment of introductory programming
students, and the pedagogical intentions of the educators
who construct these instruments..
Keywords: examination papers, computing education,
introductory programming

1 Introduction
There are several common forms of assessment in
introductory programming courses. In-class computer-
based tests and programming assignments are good ways
of assessing the interactive skill of designing and writing
computer programs. Written quizzes and examinations
are appropriate for assessing students’ familiarity with
relevant theoretical knowledge. In addition, written tests
can examine some aspects of program designing and
coding, although they are perhaps not ideally suited for
the assessment of these skills.

Copyright © 2012, Australian Computer Society, Inc. This
paper appeared at the 14th Australasian Computing Education
Conference (ACE2012), Melbourne, Australia, January-
February 2012. Conferences in Research and Practice in
Information Technology, Vol. 123. M. de Raadt and A.
Carbone, Eds. Reproduction for academic, not-for-profit
purposes permitted provided this text is included.

Formal examinations are widely used in the
summative assessment of students in programming
courses. Writing an examination paper is an important
task, as the exam is used both to measure the students’
knowledge and skill at the end of the course and to grade
and rank students. Yet it is often a highly individual task,
guided by the whims, preferences, beliefs, and perhaps
inertia of the examiner. Lister (2008) observes that there
is a great deal of ‘folk pedagogy’ in computing education,
and acknowledges that his early examinations were based
upon folk-pedagogic misconceptions.

In constructing an exam, educators must consider what
they wish to assess in terms of the course content. They
must consider the expected standards of their course and
decide upon the level of difficulty of the questions. Elliott
Tew (2010) suggests that “the field of computing lacks
valid and reliable assessment instruments for pedagogical
or research purposes” (p.xiii). If she is right, and the
instruments we are using are neither valid nor reliable,
how can we make any credible use of the results?

An analysis of research papers about programming
education published in computing education conferences
from 2005 to 2008 found that 42% of the studies gathered
data from formal exam assessment (Sheard, Simon,
Hamilton & Lönnberg 2009). It seems critical that we
understand the nature of these assessment instruments.
Lister (2008) urges computing educators to base their
decisions upon evidence. At least part of the relevant
evidence should be an overview of introductory
programming exams as a whole, and we have therefore
set out to examine the examinations in introductory
programming courses.

In this paper we describe an exam question
classification scheme that can be used to determine the
content and nature of introductory programming exams.
We apply this instrument to a set of exam papers and
describe the process of establishing a satisfactory inter-
rater reliability for the classifications. We report what we
have found about the content and nature of the exam
papers under consideration. This study is the first step of
large-scale investigation of the nature and composition of

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

61

formal examinations used in introductory programming
courses, and the pedagogical intentions of the educators
who write and use these examinations.

2 Background
Assessment is a critical component of our work as
educators. Formative assessment is a valuable tool in
helping students to understand what they have achieved
and in guiding them to further achievement. Summative
assessment is a tool used to determine and report the
students’ achievement, typically at the end of a course,
and to rank the students who have completed the course.
When we write and mark summative assessment
instruments we are standing in judgment on our students.
Yet concern has been expressed that very little work has
gone into understanding the nature of the instruments that
we use (Elliott Tew & Guzdial 2010).

A number of research studies have used examination
instruments to measure levels of learning and to
understand the process of learning. A body of work
conducted under the auspices of the BRACElet project
has analysed students’ responses to examination
questions (Clear et al 2008, Lister et al 2010, Lopez et al
2008, Sheard et al 2008, Venables et al 2009). Interest in
this work stemmed from earlier studies, such as that of
Whalley et al (2006), which attempted to classify
responses to examination questions using Bloom’s
taxonomy (Anderson & Sosniak 1994) and the SOLO
taxonomy (Dart & Boulton-Lewis 1998). The BRACElet
project has focused on exam questions that concern code
tracing, code explaining, and code writing. In an analysis
of findings from these studies, Lister (2011) proposes that
a neo-Piagetian perspective could prove useful in
explaining the programming ability of students; this
proposal could well guide future investigations into
assessment in programming courses.

Few studies were found that investigated the
characteristics of examination papers and the nature of
exam questions. A cross-institutional comparative study
of four mechanics exams by Goldfinch et al (2008)
investigated the range of topics covered and the perceived
level of difficulty of exam questions. Within the
computing discipline, Simon et al (2010) analysed 76
CS2 examination papers, but considered only particular
data structures questions, which made up less than 20%
of the marks available in the exams. Their analysis
focused on the cognitive skills required and the level of
difficulty of the questions. Following this study, a further
analysis of 59 CS2 papers in the same dataset (Morrison
et al 2011) investigated the range of question styles that
can be used to test students’ skills in the application of
data structures. Petersen et al (2011) analysed 15 CS1
exam papers to determine the concepts and skills covered.
They found a high emphasis on code writing questions,
but with much variation across the exams in the study.
Shuhidan et al (2010) investigated the use of multiple-
choice questions in summative assessment of four levels
of programming courses (CS0-CS3) and found that the
use of these questions remained controversial.

Our study focuses on introductory programming
examination papers, developing a classification scheme
for the purpose of analysing these papers to give a

comprehensive view of the style of questions that make
up these instruments.

The study was initiated at a workshop associated with
the Fourth International Workshop on Computing
Education (ICER 2008). A small group developed the
ideas and a provisional classification scheme, which they
presented at a subsequent workshop associated with the
13th Australasian Computing Education Conference
(ACE 2011). At the second workshop the scheme was
trialled on a few exam questions and adjusted in the light
of the trial. Full details of the scheme’s development are
described elsewhere (Sheard et al 2011).

3 The classification scheme
The classification scheme consists of eleven different
measures, one of which is administrative and the other ten
of which describe features that we believe are useful in
trying to form an understanding of an examination.

The remainder of this section briefly describes each of
the features, and, where appropriate, the reasons for their
inclusion.
Percentage of mark allocated. This is the feature
described above as administrative. While it might be
inherently useful, for example in noting whether
comparable questions are worth comparable marks in
different exams, its principal purpose in this scheme is for
weighting, determining what proportion of a complete
exam covers the mastery of particular topics or skills.
Topics covered. In the classification system used here an
exam question is assigned at most three of the following
topics: data types & variables, constants, strings, I/O, file
I/O, GUI design and implementation, error handling,
program design, programming standards, testing, scope
(includes visibility), lifetime, OO concepts (includes
constructors, classes, objects, polymorphism, object
identity, information hiding, encapsulation), assignment,
arithmetic operators, relational operators, logical
operators, selection, loops, recursion, arrays, collections
(other than arrays), methods (includes functions,
parameters, procedures and subroutines), parameter
passing, operator overloading.

In the list above, topics that follow ‘assignment’ tend
to subsume data types & variables, so any question that is
categorised with these later topics need not include data
types & variables. Similarly, a topic such as selection or
loops usually subsumes operators, and arrays generally
subsumes loops. Having assigned one of these broader
topics to a question, we would not also assign a topic
subsumed by that broader topic.

The list of topics was compiled from a number of
different sources, including the computing education
literature. Dale (2005, 2006) lists the topics that emerged
from a survey of computing academics; Schulte and
Bennedsen (2006) surveyed teachers of introductory
programming to determine the topics that were taught and
the perceived difficulty of those topics; Elliott Tew and
Guzdial (2010) identified topics by analysing the content
of relevant textbooks.
Skill required to answer the question. Some questions
can be answered purely by recalling knowledge that has
been imparted during the course. Others require the
application of different skills: tracing code (which

CRPIT Volume 123 - Computing Education 2012

62

includes evaluating expressions), explaining code, writing
code, modifying code (which includes refactoring or
rewriting code), debugging code, designing programs,
and testing programs. When classifying a question we
require a single skill to be nominated. If a question
appears to require two or more skills (for example,
designing programs and writing code), we would classify
it with the skill that appears dominant: in a question
involving program design and code-writing, the code-
writing would probably dominate.
Style of question. This feature indicates what form of
answer is expected by the question. The choices are:
multiple choice, short answer (including definitions,
results of tracing or debugging, and tables), program
code, Parsons problem (Parsons & Haden 2006), and
graphical representation (for example, concept, flow
chart, class diagram, picture of a data structure). Only one
of the above can be chosen. Similar categories were used
by Petersen et al (2011).
Open/closed. A question that has only one possible
correct answer is classified as closed. All others are
classified as open.
Cultural references. Is there any use of terms, activities,
or scenarios that may be specific to a cultural group and
may influence the ability of those outside the group to
answer the question? There might be references to a
particular ethnic group and their customs, but a cultural
reference need not be ethnic. For example, a question
might use vocabulary or concepts that refer to a specific
sport, such as cricket.
Degree of difficulty. Low, medium, or high. This is an
attempt to estimate how difficult the average student
would find the question at the end of an introductory
course. This classification is similar to that used by
Simon et al (2010) in their analysis of CS2 exam papers
and Goldfinch et al (2008) in their analysis of mechanics
examination papers.

For reasons explained in the next section, the
remaining five measures were not used in the current
analysis, and therefore their description here is far more
brief than the description given to and used by the
classifiers.
Explicitness. Low, medium, or high. Extent to which the
question states explicitly what the students need to know
in order to answer the question. A question with low
explicitness will assume that students already know, or
can deduce, much about the task to be completed.
Operational complexity. Low, medium, or high. The
number and sophistication of the tasks to be performed.
Conceptual complexity. Low, medium, or high. The
types and combinations of the concepts that must be
known in order to correctly answer the question.
Linguistic complexity. Low, medium, or high. The
length, sophistication, and general comprehensibility of
the question.
Intellectual complexity. Where the question fits into
Bloom’s taxonomy (Anderson & Sosniak 1994).

The measures of complexity were originally used by
Williams and Clarke (1997) in the domain of

mathematics, and were applied to the computing domain
by Carbone (2007).

4 Inter-rater reliability
As mentioned in Section 2, a number of studies have
classified examinations in various ways. However, none
of those studies has really established whether their
classification systems are reliable across multiple raters.

Simon et al (2010) report at least 80% agreement on
their classification, but in each instance this was between
just two classifiers, one of whom classified a full set of
questions and the other of whom classified 20% of those
questions to check the level of agreement. Furthermore,
their analysis deals only with questions in highly specific
topics, and the questions classified by each main
classifier were all in the same topic area. It is conceivable
that all of these factors would contribute to a higher level
of agreement than might be expected among a large
number of classifiers analysing a broader range of
questions.

Petersen et al (2011) did not conduct an inter-rater
reliability test. After classifying the questions they were
considering, the individual classifiers discussed their
classifications in an attempt to reach consensus. Even
then, they report difficulty in reaching consensus on most
of the measures they were applying.

Goldfinch et al (2008) do not report an attempt to
measure agreement among the classifiers. Like Petersen
et al (2011) they classified individually and then
attempted to reach consensus, and like Petersen et al they
found it remarkably difficult to do so.

For this project we chose to conduct a formal and
transparent test of inter-rater reliability. With few such
tests reported in the computing education literature, we
felt it important to conduct and to report on this test.

4.1 Reliability test 1: individual
The first test of inter-rater reliability was carried out on
the full scheme of 11 categories. All 12 participants
independently classified the 33 questions of the same
examination in all 11 categories.

All categories but one were analysed using the Fleiss-
Davies kappa for inter-rater reliability (Davies & Fleiss
1982). Because the scheme permits multiple topics to be
recorded for a question, the Topics category could not be
analysed by this measure, which depends upon the
selection of single values.

Table 1 shows the results of the inter-rater reliability
test. On kappa measurements of this sort, an agreement of
less than 40% is generally considered to be poor; between
40% and 75% is considered fair to good; and more than
75% is rated excellent (Banerjee et al 1999).

Perhaps the most startling figure in Table 1 is the 73%
agreement on the percentage mark for each question. This
was simply a matter of copying the mark for each
question from the exam paper to the spreadsheet used for
classifying. The bulk of the disagreement was due to one
classifier who neglected to enter any values for the
percentage mark. Once this was remedied, the agreement
was still only 98%, because two classifiers had each
wrongly copied one value. This is a salutary reminder that
data entry errors do happen, and we resolved that all of

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

63

our subsequent classifying would be conducted by pairs,
in the expectation that this would help to eliminate such
errors.

While we did not expect full agreement on the other
measures, we were still surprised at the extent of
disagreement. More often than not, each classifier felt
reasonably confident that they could at least determine
how difficult a question is; yet agreement on that measure
was an uninspiring 43%. Like Goldfinch et al (2008) and
Petersen et al (2011) we realised that the difficulty of a
question is strongly dependent on what was taught in the
course and how it was taught, and without that
information we could only rate the questions according to
how difficult we believed our own students would find
them.

Following this rather disappointing result, the five
categories dealing with complexity, marked in Table 1
with asterisks, were dropped from the scheme until we
could find a way to improve the reliability of
classification on those measures.

In view of its exceedingly poor agreement, it might
seem strange that we did not drop the cultural references
category at this point. One reason is that the nature of the
disagreements was different. On the complexity measures
the classifications tended to be spread more or less evenly
across the possible values, and we hope that with further
clarification and practice it will be possible to reduce the
spread. On the cultural references measure the
disagreement was invariably that one classifier saw a
reference that others had not seen, but tended to
acknowledge after discussion. This is discussed further in
section 5.6.

4.2 Reliability test 2: individual
Having thoroughly classified one exam paper in the first
inter-rater reliability test, we classified a further ten
exams according to the remaining categories. Classifiers
worked in pairs, first classifying each question
individually, then discussing their classifications and
seeking consensus where there was disagreement.

A second inter-rater reliability test was then conducted
to determine whether the additional practice and the
experience of working in pairs had improved the level of
agreement. Again all 12 participants classified a single
complete examination, this one consisting of 28
questions. For completeness, it should be noted that at
this point one of the original 12 members became
unavailable to continue with the work, and a new member
joined the project.

4.3 Reliability test 3: pairs
When two classifiers disagree, this is either because one
of them has made a minor error, which should be picked
up immediately, or because there is genuine scope for
disagreement. In the latter case, two people discussing the
question might be more likely than one person alone to
reach the same conclusion as others. For this reason,
immediately following the second inter-reliability test the
individual classifiers were formed into pairs and asked to
agree on each of the classifications of that same
examination.

The pairs for this third test were not self-selected, and
were generally not the same as the pairs that had worked
together on the first set of classifications. Instead they
were selected by their order of completion of the
individual reliability test. When the first two classifiers
had completed their individual classification of the exam
questions, they were formed into a pair and asked to
come up with an agreed classification for the same
questions; when the next two individuals had finished,
they were formed into the second pair; and so on.

4.4 Comparing the reliability tests
Table 2 shows the results of all three inter-rater reliability
tests on the six categories that they have in common.

It is pleasing to see that between the first two tests,
reliability generally improved with time and practice.

It is also pleasing to see that the agreement between
pairs in the third test was an improvement on the
agreement between individuals in the second test. On the
basis of this finding, we conclude that pair classification
is more reliable than individual classification.

Neither of these findings is surprising, but such
findings are seldom reported, so we feel that there is
value in explicitly reporting them here. On the basis of
the second finding, we plan to conduct all of our
subsequent classification in pairs.

Category Reliability Reliability
range

Percentage 73% fair to good
Skill required 73% fair to good
Style of question 90% excellent
Open/closed 60% fair to good
Cultural references 15% poor
Degree of difficulty 43% fair to good
*Explicitness 31% poor
*Operational complexity 52% fair to good
*Conceptual complexity 34% poor
*Linguistic complexity 47% fair to good
*Intellectual complexity 27% poor

Table 1: Inter-rater reliability for 11 categories of
the initial scheme (the 12th cannot be analysed by
this measure). The categories marked with asterisks

were dropped for the classifying reported in this paper.

 Fleiss-Davies Kappa
Category Test 1

(solo)
Test 2
(solo)

Test 3
(pair)

Percentage 73% 100% 100%
Skill required 73% 73% 84%
Style of question 90% 89% 93%
Open/closed 60% 73% 86%
Cultural references 15% 33% 37%
Degree of difficulty 43% 54% 60%
Table 2: Inter-rater reliability for six categories of

the interim scheme (the seventh cannot be
analysed by this measure)

CRPIT Volume 123 - Computing Education 2012

64

5 Results
This section presents the results of analysing 20
introductory programming exam papers using the exam
classification scheme. A total of 469 questions were
identified in these exams, with the number of questions in
an exam ranging from 4 to 41. For each question the
percentage mark allocated was recorded, and this was
used as a weighting factor when calculating the
contribution of each question to the values in each
category.

5.1 Exam paper demographics
The 20 exam papers in the study were sourced from ten
institutions in five countries. They were all used in
introductory programming courses, eighteen at the
undergraduate level and two at the postgraduate level.
Course demographics varied from 25 students on a single
campus to 800 students over four domestic and two
overseas campuses. Most courses used Java with a variety

of IDEs (BlueJ, JCreator, Netbeans, Eclipse), one used
JavaScript, one used C# with Visual Studio, one used
Visual Basic, one used VBA (Visual Basic for
Applications) and one used Python. Table 3 shows further
specific information about the 20 papers and the courses
in which they are used.

5.2 Topics covered
For each question we recorded up to three topics that we
considered were central to the question. From our original
set of 26 topics, two topics (algorithm complexity and
operator overloading) did not appear in the data set; and
during analysis we added four further topics (events,
expressions, notional machine and class libraries), giving
a final list of 28 topics.

Table 4 shows the topics classified and their
percentage coverage over the exams in the sample.
Topics with the greatest coverage were OO concepts,
methods, loops, arrays, program design, I/O and

Paper

Paper
source Exam characteristics Teaching context

Country Format Style
% of
final
mark

Duration
(hrs)

Enrolment Mode Approach

Program
ming

language
1 New

Zealand
Paper Closed book 40 2 150-200 Campus Objects first Java

2 New
Zealand

Paper Closed book 40 2 180 Campus Objects first Java (Karel
the robot)

3 Australia Paper Closed book 40 3 240 Campus Objects first Java

4 Australia Paper Closed book 50 2 450 Online Programming
logic, then Java

Alice, Java

5 Australia Paper Closed book 50 3 120 Campus Objects later Java

6 Australia Paper Closed book 50 3 250 Campus Objects later Visual
Basic

7 Australia Paper Closed book 50 3 50 Mixed Objects first Java

8 Australia Paper Closed book 50 3 255 Campus Objects later C#

9 Australia Paper Closed book 60 2 250 Campus Objects first Java

10 Australia Paper Closed book 60 2.5 60 Campus Objects later VBA

11 Australia Paper Closed book 60 3 700-800 Campus Objects later Java

12 Australia Paper Closed book 60 3 700-800 Mixed Objects later Java

13 Australia Paper Closed book 60 3 700-800 Mixed Objects later Java

14 Finland Paper Closed book 70 3 20 Campus Procedural Python

15 Finland Paper Closed book 80 3 60 Mixed Objects later Java

16 England Paper Closed book 80 3 100 Campus Objects later Java

17 Australia Paper Mixed 50 2 180 Mixed Web script,
procedural

JavaScript

18 Australia Paper Mixed 70 2 337 Campus Objects first Java

19 USA Paper &
online

Open book 25 2 25 Campus Objects later Java

20 USA Paper &
online

Open book 25 4 30 Campus Objects later Java

Table 3: Exam papers classified in this study

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

65

selection. Eleven topics had less than 2% coverage.
The study conducted by Elliott Tew and Guzdial

(2010) identified a set of eight concepts most commonly
covered in CS1 courses; six of these appear in the top
seven topics listed in Table 4. Their top eight concepts
did not include program design, but included recursion
and logical operators, which we found had low coverage
(0.7% and 0.9% respectively).

5.3 Skill required
From a list of eight skills, each question was classified
according to the main skill required to answer the
question. Figure 1 shows the overall percentage coverage
of each required skill over the 20 exams in the dataset.
The most frequently required skill was code writing
(48%). The five skills concerning code (writing, tracing,
explaining, debugging and modifying) together covered
81% of all exams, the remainder being taken by
knowledge recall (10%), design (7%) and (2%) testing.
We recognise that writing code often also involves a
degree of program design, but we classified questions
under program design only if they did not involve coding.

Figure 3 shows a summary of the skills required in
each exam. In this graph the five skills associated with
coding have been combined into a single coding category.
The graph shows that coding in these various forms is the
predominant skill assessed in introductory programming
exams.

The four exams that exceed 100% do so because they
include some choice, so students do not have to complete
all questions to score 100%. The one exam that falls
below 100% does so because it includes material other
than programming, and we analysed only the
programming-related questions.

5.4 Question style
The most common question style involved producing
code, with 54% of the marks allocated for code-writing
questions (including Parson’s problems). Short-answer
questions make up 28% of the exams, multiple-choice
questions 17%, and graphical style less than 2% (see
Figure 2). These findings are somewhat comparable with
those of Petersen et al (2011), whose study of CS1 exam
content found that 59% of the exam weight was for
coding questions, 36% for short answer, 7% for multiple
choice, and 3% for graphical questions.

Figure 4 summarises the question styles in each exam,
and shows a wide variation across the exams. One exam
consists entirely of multiple choice questions, while more
than half have no multiple choice questions. It is
interesting to note that although coding is the
predominant style overall, in two exams there is no code
writing required. Petersen et al (2011) also found that the
percentage of code writing varied across the CS1 exams
they studied.
5.5 Open/closed
The questions were coded according to whether they were
open or closed in nature. More marks were allocated to
questions that were open (61%) than closed (39%), but
this varied markedly over the exams in our sample, as
shown in Figure 5. In two exams all questions were
closed, and in one exam all questions were open.

Topic %
Coverage

OO concepts (includes constructors,
classes, objects, polymorphism, object
identity, information hiding,
encapsulation)

35.8

Methods (includes functions, parameters,
procedures and subroutines) 34.5

Loops (subsumes operators) 32.3
Arrays 26.3
Program design 16.9
I/O 12.3
Selection (subsumes operators) 11.3
Assignment 8.2
File I/O 6.8
Parameter passing 6.7
Strings 6.2
data types& variables 4.4
Arithmetic operators 3.5
Error handling 3.1
Collections (other than arrays) 2.8
Relational operators 1.9
Scope (includes visibility) 1.8
GUI 1.8
Testing 1.3
Constants, Events, Expressions, Lifetime,
Logical operators, Programming
standards, Recursion

< 1 each

Table 4: Topics and their coverage over the 20
exams

Figure 1: Skills required to answer questions

CRPIT Volume 123 - Computing Education 2012

66

5.6 Cultural references
Cultural references were identified in only eight of the
469 questions analysed, making up a little more than 2%
of the available marks. This is so small as to suggest that
it might not be worth assessing or reporting – especially
as the trial classification showed that any cultural
references tended to be spotted first by a single classifier,
and only then agreed to by others. However, one likely
extension of this work will be to establish a repository of
exam questions for the use of educators. In such a
repository, this category would serve to alert users that
somebody feels a particular question may cause problems
for some students outside a particular context or culture.

5.7 Level of difficulty
The questions were classified according to the perceived
level of difficulty for a student at the end of an
introductory programming course. Overall, half of the
marks (50%) were allocated to questions rated as medium

difficulty, while low difficulty (26%) and high difficulty
(24%) scored about the same. As with other categories,
levels of difficulty varied greatly over the exams in our
sample, as shown in Figure 6. By comparison, in the data
structures questions that they analysed, Simon et al
(2010) classified more questions as high (42%), fewer
questions as medium (40%), and about the same
proportion as low in difficulty.

6 Discussion
A number of computing education research groups are
undertaking classification of various kinds, presumably
sharing our belief that being able to accurately describe a
concept is an important step on the road to understanding
it. However, there is little point to a classification system
unless it can be clearly established that the system is
reliable across multiple classifiers.

In this paper we lay out the steps that were taken to
assess the reliability of our scheme for classifying exam
questions. We explicitly apply a recognised inter-rater
reliability measure, developed and verified by
statisticians, and we explain at which stages of the
classification we applied this measure. We explain our
decision to drop several categories of our scheme until we
can find a way to improve the inter-rater reliability of
those categories.

We are therefore able to provide evidence that
reliability appears to improve as the classifiers do more
classifying, and that classifying in pairs is more reliable
than classifying by individuals.

We believe that an approach of this rigour is essential
if readers are to have faith in the findings that we report.

The exams that we have analysed show a very heavy
emphasis on coding skills, and the topics covered are
concerned mainly with programming elements and
constructs. This is not surprising in courses that teach
programming, but it is worth noting that, while there was
some coverage of the related topic of program design,
there was very little focus on examining programming
standards and program testing.

Figure 2: Marks awarded for each style of question

Figure 3: Skills required in each exam

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

67

Of course the skills being examined might not
represent the full extent of what is taught in the course.
Further material might be covered by assessment items
other than the final exam, or indeed might not be assessed
at all, even though it is explicitly taught. It is worth
noting that a recent study by Shuhidan et al (2010) found
that half the instructors surveyed believed that summative
assessment was a valid measure of a student’s ability to
program.

We have found a wide variation in the styles of
question used in exams. Within a single exam, this
variety could offer students a number of different ways to
demonstrate what they have learned. Between exams it
raises the question of whether different forms of
questions are equally valid assessments of acquired
programming skills. For example, more than half of the
exams we analysed had a multiple choice component, and
one of them was entirely multiple choice. The study by

Shuhidan et al (2010) found that the use of multiple
choice questions is controversial. At this stage of our
study we have not tried to determine why particular styles
of question were used; we intend to pursue this question
in our future work.

The variation among raters in the trial raises some
interesting questions. Most of the participants are or have
been involved in teaching introductory programming
courses, yet the agreement on level of difficulty was only
43% in the first trial and 54% in the second, rising to 60%
for the pair classification. Essentially, there was little or
no consensus on whether questions were easy, moderate,
or difficult. Both at the workshop and following the trial,
discussion of specific questions brought out good
arguments for each possible level of difficulty, making it
clear that what we are trying to determine is highly
subjective, and depends not just upon the feelings of
individual participants but on their knowledge of the

Figure 4: Marks for styles of question in each exam

Figure 5: Marks for open and closed questions for each exam

CRPIT Volume 123 - Computing Education 2012

68

courses that they teach and how their students would
therefore respond to those particular questions. Perhaps it
is also influenced in some small way by aspects of the
culture of the institutions at which the individual
participants are employed.

It is a consequence of this line of thought that, even
with the appropriate training, the author of an exam is
unlikely to classify it as we do except on the trivial
measures. The author is fully conversant with the course
and its context, and is thus better able to classify the exam
within that context. Our classification, on the other hand,
is being conducted in the context of the other introductory
programming exams that we classify, with no detailed
knowledge of how each individual course was taught. We
are exploring the range of exams and exam questions that
we encounter, from what we hope is a reasonably
consistent perspective.

7 Future work
We have classified 20 introductory programming
examinations, but this is not yet a large enough set to
furnish a general picture of examinations in introductory
programming courses. For example, all of these exams
are in procedural and/or object-oriented programming.
We plan to classify a broader set of examinations,
including some from functional programming courses and
some from logic programming courses. With this
expanded data set we hope to be able to form a broad
view of what introductory programming exams consist of.

In parallel with this further classification we intend to
explore the role of formal examinations in programming
courses. It is not obvious that a written examination of
short duration is the best way to assess students’
acquisition of a skill that is arguably best applied while
working for longer periods at a computer. Why, then, do
so many programming courses include a written exam as
a major component of their assessment? We intend to
interview a number of teachers of introductory
programming courses in the hope of eliciting an answer
to this question.

In addition, we hope that the interviews will give us an
insight into how academics design and create their exams,
and to what extent that process is tied in with the stated
learning objectives of the course.

Once we have completed the additional classification
and the interviews, we hope to be able to present a rich
picture of the nature and role of examinations in
introductory programming courses.

8 References
Anderson, LW & LA Sosniak (1994). Excerpts from

“Taxonomy of Educational Objectives, The
Classification of Educational Goals, Handbook I:
Cognitive Domain”. In Bloom’s Taxonomy: A Forty
Year Retrospective, LW Anderson and LA Sosniak,
Eds. Chicago, Illinois, USA: The University of Chicago
Press, 9-27.

Banerjee, M, M Capozzoli, L McSweeney, & D Sinha
(1999). Beyond kappa: a review of interrater agreement
measures, Canadian Journal of Statistics 27:3-23.

Carbone, A (2007). Principles for designing programming
tasks: how task characteristics influence student
learning of programming. PhD dissertation, Monash
University, Australia.

Clear, T, J Whalley, R Lister, A Carbone, M Hu, J
Sheard, B Simon, & E Thompson (2008). Reliably
classifying novice programmer exam response using
the SOLO taxonomy. 21st Annual Conference of the
National Advisory Committee on Computing
Qualifications (NACCQ 2008), Auckland, New
Zealand, 23-30.

Dale, N (2005). Content and emphasis in CS1. SIGCSE
Bulletin 37:69-73.

Dale, N (2006). Most difficult topics in CS1: Results of
an online survey of educators. SIGCSE Bulletin 38:49-
53.

Dart, B & G Boulton-Lewis (1998). The SOLO model:
Addressing fundamental measurement issues. Teaching
and Learning in Higher Education, M. Turpin, Ed.
Camberwell, Victoria, Australia: ACER Press, 145-176.

Figure 6: Level of difficulty for questions in each exam

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

69

Davies, M & JL Fleiss (1982). Measuring agreement for
multinomial data, Biometrics 38:1047-1051.

Elliott Tew, A (2010). Assessing fundamental intro-
ductory computing concept knowledge in a language
independent manner. PhD dissertation, Georgia
Institute of Technology, USA.

Elliott Tew, A & M Guzdial (2010). Developing a
validated assessment of fundamental CS1 concepts.
SIGCSE 2010, Milwaukee, Wisconsin, USA, 97-101.

Goldfinch, T, AL Carew, A Gardner, A Henderson, T
McCarthy, & G Thomas (2008). Cross-institutional
comparison of mechanics examinations: a guide for the
curious. Conference of the Australasian Association for
Engineering Education, Yeppoon, Australia, 1-8.

Lister, R (2008). After the gold rush: toward sustainable
scholarship in computing. Tenth Australasian
Computing Education Conference (ACE 2008),
Wollongong, Australia, 3-17.

Lister, R (2011). Concrete and other neo-Piagetian forms
of reasoning in the novice programmer. 13th
Australasian Computing Education Conference (ACE
2011), Perth, Australia, 9-18.

Lister, R, T Clear, Simon, DJ Bouvier, P Carter, A
Eckerdal, J Jacková, M Lopez, R McCartney, P
Robbins, O Seppälä, & E Thompson (2010). Naturally
occurring data as research instrument: analyzing
examination responses to study the novice programmer.
SIGCSE Bulletin 41:156-173.

Lopez, M, J Whalley, P Robbins, & R Lister (2008).
Relationships between reading, tracing and writing
skills in introductory programming. Fourth
International Computing Education Research
Workshop (ICER 2008), Sydney, Australia, 101-112.

Morrison, B, M Clancy, R McCartney, B Richards, & K
Sanders (2011). Applying data structures in exams.
SIGCSE 2011, Dallas, Texas, USA, 631-636.

Parsons, D & P Haden (2006). Parson’s programmimg
puzzles: a fun and effective learning tool for first
programming courses. Eighth Australasian Computing
Education Conference (ACE 2006), Hobart, Australia,
157-163.

Petersen, A, M Craig, & D Zingaro (2011). Reviewing
CS1 exam question content. SIGCSE 2011, Dallas,
Texas, USA, 631-636.

Schulte, C & J Bennedsen (2006). What do teachers teach
in introductory programming? Second International
Computing Education Research Workshop (ICER
2006), Canterbury, UK, 17-28.

Sheard, J, A Carbone, R Lister, B Simon., E Thompson,
& J Whalley (2008). Going SOLO to assess novice
programmers. 13th Annual Conference on Innovation
and Technology in Computer Science Education
(ITiCSE 2008), Madrid, Spain, 209-213.

Sheard, J, Simon, M Hamilton, & J Lönnberg (2009).
Analysis of research into the teaching and learning of
programming. Fifth International Computing Education
Research Workshop (ICER 2009), Berkeley, CA, USA,
93-104.

Sheard, J, Simon, A Carbone, D Chinn, M-J Laakso, T
Clear, M de Raadt, D D’Souza, J Harland, R Lister, A
Philpott, & G Warburton (2011). Exploring
programming assessment instruments: a classification
scheme for examination questions. Seventh
International Computing Education Research
Workshop (ICER 2011), Providence, RI, USA, 33-38.

Shuhidan, S, M Hamilton, & D D’Souza (2010).
Instructor perspectives of multiple-choice questions in
summative assessment for novice programmers,
Computer Science Education 20:229-259.

Simon, A Carbone, M de Raadt, R Lister, M Hamilton, &
J Sheard (2008). Classifying computing education
papers: process and results. Fourth International
Computing Education Research Workshop (ICER
2008), Sydney, NSW, Australia, 161-171.

Simon, B, M Clancy, R McCartney, B Morrison, B
Richards, & K Sanders (2010). Making sense of data
structures exams. Sixth International Computing
Education Research Workshop (ICER 2010), Aarhus,
Denmark, 97-105.

Venables, A, G Tan, & R Lister (2009). A closer look at
tracing, explaining and code writing skills in the novice
programmer. Fifth International Computing Education
Research Workshop (ICER 2009), Berkeley, CA, USA,
117-128.

Whalley, J, R Lister, E Thompson, T Clear, P Robbins,
PKA Kumar, & C Prasad (2006). An Australasian study
of reading and comprehension skills in novice
programmers, using the Bloom and SOLO taxonomies,
Eighth Australasian Computing Education Conference
(ACE 2006), Hobart, Australia, 243-252.

Williams, D & D Clarke (1997). Mathematical task
complexity and task selection. Mathematical
Association of Victoria 34th Annual Conference,
Clayton, Vic, Australia, 406-415.

CRPIT Volume 123 - Computing Education 2012

70

